Services Available |
---|
The CWS655E is a wireless version of our CS655 soil water reflectometer. It has 12 cm rods and monitors soil volumetric water content, bulk electrical conductivity, and temperature. This reflectometer has an internal 868 MHz spread-spectrum radio that transmits data to a CWB100E Wireless Base Station or to another wireless sensor. The 868 MHz frequency is commonly used in Europe.
Read MoreThe CWS655E has 12-cm rods that insert into the soil. It measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.
Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This allows accurate water content measurements in soils with bulk ≤3.7 dS m-1 without performing a soil-specific calibration.
Soil bulk electrical conductivity is also derived from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content measurement. For other orientations, the temperature measurement will be that of the region near the rod entrance into the epoxy body.
There are situations when it is desirable to make measurements in locations where the use of cabled sensors is problematic. Protecting cables by running them through conduit or burying them in trenches is time consuming, labor intensive, and sometimes not possible. Local fire codes may preclude the use of certain types of sensor cabling inside of buildings. In some applications measurements need to be made at distances where long cables decrease the quality of the measurement or are too expensive. There are also times when it is important to increase the number of measurements being made but the datalogger does not have enough available channels left for attaching additional sensor cables.
Weather Resistance | IP67 rating for sensor and battery pack (Battery pack must be properly installed. Each sensor is leak tested.) |
Operating Temperature Range | -25° to +50°C |
Operating Relative Humidity | 0 to 100% |
Power Source | 2 AA batteries with a battery life of 1 year assuming sensor samples taken every 10 minutes. (Optional solar charging available.) |
Average Current Drain | 300 μA (with 15-minute polling) |
Rod Length | 12 cm (4.7 in.) |
Body Dimensions | 14.5 x 6 x 4.5 cm (5.7 x 2.4 x 1.77 in.) |
Weight | 216 g (7.6 oz) |
Measurement Accuracies |
|
Volumetric Water Content | ±3% VWC typical in mineral soils that have solution electrical conductivity ≤10 dS/m. Uses Topps Equation (m3/m3). |
Relative Dielectric Permittivity |
|
Bulk Electrical Conductivity | ±(5% of reading + 0.05 dS/m) |
Soil Temperature | ±0.5°C |
Internal 25 mW FHSS Radio |
|
Frequency | 868 MHz |
Where Used | Europe |
FHSS Channel | 16 |
Transmitter Power Output | 25 mW (+14 dBm) |
Receiver Sensitivity | -110 dBm (0.1% frame error rate) |
Standby Typical Current Drain | 3 μA |
Receive Typical Current Drain | 18 mA (full run) |
Transmit Typical Current Drain | 45 mA |
Average Operating Current | 15 μA (with 1-second access time) |
Quality of Service Management | RSSI |
Additional Features | GFSK modulation, data interleaving, forward error correction, data scrambling, RSSI reporting |
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
The Wireless Sensor Planner is a tool for use with Campbell Scientific wireless sensors. It assists in designing and configuring wireless sensor networks.
Number of FAQs related to CWS655E: 33
Expand AllCollapse All
Damage to the CWS655 electronics or rods cannot be repaired because these components are potted in epoxy. A faulty or damaged sensor needs to be replaced. For more information, refer to the Repair and Calibration page.
Period average and electrical conductivity readings were taken with several CWS655 probes in solutions of varying permittivity and varying electrical conductivity at constant temperature. Coefficients were determined for a best fit of the data. The equation is of the form
Ka(σ,τ) = C0*σ3*τ2 + C1*σ2*τ2 + C2*σ*τ2 + C3*τ2 + C4*σ3*τ + C5*σ2*τ + C6*σ*τ + C7*τ + C8*σ3 + C9*σ2 + C10*σ + C11
where Ka is apparent dielectric permittivity, σ is bulk electrical conductivity (dS/m), τ is period average (μS), and C1 to C11 are constants.
No. The equation used to determine volumetric water content in the firmware for the CWS655 is the Topp et al. (1980) equation, which works for a wide range of mineral soils but not for organic soils. In organic soils, the standard equations in the firmware will overestimate water content.
When using a CWS655 in organic soil, it is best to perform a soil-specific calibration. For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. A linear or quadratic equation that relates period average to volumetric water content will work well.
No. The temperature sensor is located inside the sensor’s epoxy head next to one of the sensor rods. The stainless-steel rods are not thermally conductive, so the reported soil temperature reading is actually the temperature of the sensor head near the soil surface.
Because the sensor is installed vertically with the sensor head above ground, the soil temperature reading is not representative of the temperature over the length of the 12 cm rods, but the reading is closer to the temperature of the soil surface. Because the temperature reading is not representative of the entire thickness of soil measured for water content, no attempt was made to correct the water content readings for temperature changes.
The volumetric water content reading is the average water content over the length of the sensor’s rods.
The best way to test whether the sensor is faulty is to connect an A205 interface to the 4-pin connector of the sensor and use DevConfig software to communicate directly with the sensor through a computer. This is described in the Wireless Sensor Network Instruction Manual. Select Connect in DevConfig, and press the Setup button on the back of the sensor.
Select the Settings Editor tab and scroll down to Measurements. This will query the sensor every 5 seconds and display readings for volumetric water content (VWC), bulk electrical conductivity (EC), temperature (Ts), apparent bulk permittivity (Pe), voltage ratio (AR), period, internal sensor temperature (Ti), and battery voltage (BV). Certain soil conditions may cause NAN values in the VWC, EC, and/or Pe fields, but a working sensor always reports Ts, AR, period, Ti, and BV. If any of those fields report NAN, the sensor is damaged. If only one, two, or three of the values are NAN, the NAN values are caused by soil conditions.
The CWS655 can detect water as far away as 10 cm in saturated sand. As the soil dries down, that distance decreases to approximately 4 cm in dry sand.
Yes, but the pots would have to be large. The CWS655 can detect water as far away as 10 cm (4 in.) from the rods. If the pot has a diameter smaller than 20 cm (8 in.), the CS655 could potentially detect the air around the pot, which would underestimate the water content. In addition, potting soil is typically high in organic matter and clay, causing the probably need for a soil-specific calibration.
When the voltage ratio value is greater than 17, the bulk EC reading is reported as NAN. This reading also causes the permittivity and volumetric water content values to be NAN.
Shortening the rods will void the warranty. There are several other reasons why Campbell Scientific strongly discourages shortening the sensor’s rods. The electronics in the sensor head have been optimized to work with the 12 cm long rods. Shortening these rods will change the period average. Consequently, the equations in the firmware will become invalid and give inaccurate readings.
We've updated our privacy policy. Learn More
Update your cookie preferences. Update Cookie Preferences